Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables
نویسندگان
چکیده
We study here the coloured multiple zeta values, obtained by extending the usual notion of the multiple zeta values by adding roots of unity. We state their main combinatorial properties. And we give, as a result, a Maple algorithm which generates the relations table between these values. R esum e Nous 3 etudions ici la fonction z3 eta multi-indic3 ee color% ee, obtenue en g3 en3 eralisant la fonction z3 eta multi-indic3 ee par ajout de racines de l’unit3 e. Nous en 3 etablissons les principales propri3 et3 es combinatoires. Et nous pr3 esentons, comme r3 esultat, un algorithme en Maple qui engendre les tables des relations entre ses valeurs. Mots cl es fonction zêta multi-indic3 ee color3 ee, fonction polylogarithme color3 ee, fonction quasisym3 etrique, alg9 ebre de m3 elange, mots de Lyndon, bases de Gr: obner. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Higher Order Shuffle Regularization for Multiple Zeta Values
We study the higher order shuffle regularization for multiple zeta values and define higher order regularized shuffle relations. We find that higher order regularized shuffle relations can be deduced from the group-like property of the Drinfel’d associator.
متن کاملExplicit Double Shuffle Relations and a Generalization of Euler’s Decomposition Formula
We give an explicit formula for the shuffle relation in a general double shuffle framework that specializes to double shuffle relations of multiple zeta values and multiple polylogarithms. As an application, we generalize the well-known decomposition formula of Euler that expresses the product of two Riemann zeta values as a sum of double zeta values to a formula that expresses the product of t...
متن کاملDouble Shuffle Relations of Euler Sums
Abstract. In this paper we shall develop a theory of (extended) double shuffle relations of Euler sums which generalizes that of multiple zeta values (see Ihara, Kaneko and Zagier, Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142 (2)(2006), 307–338). After setting up the general framework we provide some numerical evidence for our two main conjectures. At the ...
متن کاملMultiple q-Zeta Brackets
The multiple zeta values (MZVs) possess a rich algebraic structure of algebraic relations, which is conjecturally determined by two different (shuffle and stuffle) products of a certain algebra of noncommutative words. In a recent work, Bachmann constructed a q-analogue of the MZVs — the so-called bi-brackets — for which the two products are dual to each other, in a very natural way. We overvie...
متن کامل2 3 Ja n 20 06 MULTIPLE ZETA VALUES AND ROTA – BAXTER ALGEBRAS ( DEDICATED TO PROFESSOR MELVYN NATHANSON FOR HIS 60 TH BIRTHDAY )
We study multiple zeta values and their generalizations from the point of view of Rota–Baxter algebras. We obtain a general framework for this purpose and derive relations on multiple zeta values from relations in Rota–Baxter algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 273 شماره
صفحات -
تاریخ انتشار 2002